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Gapped quantum phases

Two states in the same phase if they are connected 
by a continuous path of gapped Hamiltonians 



Quantum phase outside of Landau theory 

No good definition known

Ground space degeneracy depending on topology

Long range entanglement

Anyonic excitations

Bulk-boundary

Topological order

Wen, Int. J. Mod. Phys. B. 4,1990



This talk

Kitaev quantum double

Ground states in td limit

Bulk-boundary



Kitaev’s quantum double model



Kitaev quantum double

Kitaev, Ann. Physics 303,2003

In the following, G is a finite group

ℋe = ℓ2(G)



Star and plaquette operators

Kitaev, Ann. Physics 303,2003

Av := 1
|G | ∑

g∈G
Ag

v Bp := Be
p

[Av, Bp] = [Av, Av′ 
] = [Bp, Bp′ 

] = 0



Ground states
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Ground states

Kitaev, Ann. Physics 303,2003

ℂ2

Bp

Hamiltonian:

H = ∑
v

(I − Av) + ∑
p

(I − Bp)

Ground state:

AvΩ = BpΩ = Ω

Remark:  on compact 
surface, degeneracy 
depends on genus 
(for toric code, )4g

Av



Ground states

Ground states are locally indistinguishable



The thermodynamic limit
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Consider 2D quantum spin systems, e.g. on :ℤ2

local algebras Λ ↦ *(Λ) ≅ ⊗x∈Λ Md(ℂ)

quasilocal algebra * := ⋃*(Λ)
∥⋅∥

local Hamiltonians  describing dynamicsHΛ

gives time evolution  & ground statesαt

if  a ground state, Hamiltonian  in GNS repn.ω Hω

Quantum spin systems
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The local Hamiltonians define a derivation

Ground states

δ(A) := lim
Λ↗ℤ2

− i[HΛ, A]

This generates dynamics t ↦ αt ∈ Aut(*)

Definition
A state  on  is a ground state for  if we 
have  for all . 
We write K for the set of ground states.

ω * HΛ
−iω(A*δ(A)) ≥ 0 A ∈ δ(A)



Ground states
Suppose we have a state . Then: ω(As) = ω(Bp) = 1

Alicki, Fannes, Horodecki: J. Phys. A 40 (2007)
Fiedler, PN: Rev. Math. Phys. 27 (2015)



Ground states
Suppose we have a state . Then: ω(As) = ω(Bp) = 1

ω(X*[−As, X]) = −ω(X*AsX)
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Ground states
Suppose we have a state . Then: ω(As) = ω(Bp) = 1

ω(X*[−As, X]) = −ω(X*AsX)
≤ω(X*X)∥As∥

+ ω(X*XAs) ≥ 0

Lemma
There is a unique state such that 

.ω(As) = ω(Bp) = 1
Alicki, Fannes, Horodecki: J. Phys. A 40 (2007)
Fiedler, PN: Rev. Math. Phys. 27 (2015)



Theorem
There is a unique translation invariant 
ground state. This ground state is pure and 
frustration free, and the Hamiltonian in the 
GNS representation as a spectral gap.



Theorem
There is a unique translation invariant 
ground state. This ground state is pure and 
frustration free, and the Hamiltonian in the 
GNS representation as a spectral gap.

What about non-frustration free states?



Non-frustration free ground states



Toric code: excitations
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Toric code: excitations

Kitaev, Ann. Physics 303,2003

Bp

σx

σx

σx σx σx

e

e

✘

✘
Fξ

σz

σz
σz

✘

✘̂F ξ′ 

m

m
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Example: toric code

✘

✘

excitations



Example: toric code

           is a single excitation state!0 � ⇢



Example: toric code

           is a single excitation state!0 � ⇢

describes 
observables in 

presence of 
background charge

⇡0 � ⇢
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Non-frustration free ground states

The states  are ground states!ω ∘ ρ

 whenever  contains the 
endpoint of the string
ω ∘ ρ(HΛ) > 0 Λ

Energy can be decreased locally (near the 
excitation) with local operators …

… but not globally (excitation just gets moved 
around)
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Ribbon operators

From now on, assume G abelian and let .(χ, c) ∈ ̂G × G

Can define “ribbon 
operators” Fω,c

ρ′ 

Interpretation: creates 
charge  and 
conjugate at endpoints

(χ, c)

Can define states 
 

as before

ωχ,c = lim
n→∞

ω0(Fχ,c
n ⋅ (Fχ,c

n )*)



Theorem (Cha, PN, Nachtergaele)
Let . Then there is a convex 
decomposition

where . Moreover, each  is 
a face, and every pure state in  is 
unitarily equivalent to the state 

.

ω ∈ K

ω = ∑
χ∈ ̂G ,c∈G

λχ,c(ω)ωχ,c

ωχ,c ∈ Kχ,c Kχ,c

Kχ,c

ωχ,c = lim
n→∞

ω0(Fχ,c
n ⋅ (Fχ,c

n )*)

Commun. Math. Phys. 357, 125-157 (2018)



Sketch of proof



Boundary terms

Lemma

Let  be a sequence of operators 
such that  and  a 

state such that . Then it is a 
ground state.

H̃ L ≥ 0
δ(A) = lim

L→∞
− i[ H̃ L, A] ω

ω( H̃ L) = 0



Boundary terms

Lemma

Let  be a sequence of operators 
such that  and  a 

state such that . Then it is a 
ground state.

H̃ L ≥ 0
δ(A) = lim

L→∞
− i[ H̃ L, A] ω

ω( H̃ L) = 0

Idea: add suitable boundary terms to quantum double 
dynamics, and send the boundary to infinity.
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Charge measurement

The operator  detects a 
charge inside the region (can 
be thought of as “Wilson 
loops”). 

Fχ,c
σ

Consider operators:
H̃ L = HL − μ(χ, c)Fχ,c

L

Using Lemma, it follows that 
states constructed are 
ground states
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Local charges

Dχ
v := 1

|G | ∑
g∈G

χ(g)Ag
v Dc

f := Bc
f

Project onto electric/magnetic charge at site (v,f)

But charges have a group structure! 
(χ1, c1)(χ2, c2) = (χ1 ⋅ χ2, c1c2)

So how can we define the total charge in a region? 
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Local charges

Dχ
L := ∑

∏i χi=χ
∏

i
Dχi

vi
Dc

L := ∑
∏i ci=c

∏
i

Dci
fi

Lemma
These operators are only supported on the 
boundary. In fact, .Fχ,c

L = Dχ
LDc

L

Both descriptions are very useful!
This allows for an explicit description of local GS
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Charged ground states
Can define a set of charged ground states

Kχ,c := {ωχ,c : ∃ω ∈ K, lim
L→∞

ω(Dχ,c
L ) > 0 and 

ωχ,c = w* − lim
L→∞

ω(⋅Dχ,c
L )

ω(Dχ,c
L ) }

One can prove that  is a faceKχ,c ⊂ K



Lemma
Let . Then the following limit exists:

Furthermore, if , then we have
.

ω ∈ K
λχ,c(ω) = lim

L→∞
ω(Dχ,c

L ) ≥ 0.
ω ∈ Kχ,c

λχ′ ,c′ 
(ω) = δc,c′ 

δχ,χ′ 



Theorem (Cha, PN, Nachtergaele)
Let . Then there is a convex 
decomposition

where . Moreover, each  is 
a face, and every pure state in  is 
unitarily equivalent to the state 

.

ω ∈ K

ω = ∑
χ∈ ̂G ,c∈G

λχ,c(ω)ωχ,c

ωχ,c ∈ Kχ,c Kχ,c

Kχ,c

ωχ,c = lim
n→∞

ω0(Fχ,c
n ⋅ (Fχ,c

n )*)

Commun. Math. Phys. 357, 125-157 (2018)
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The non-abelian case
(Work in progress with Mahdie Hamdan)
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Non-abelian quantum double
Can we get a similar result for G non-abelian?

Ribbon operators

Closed loops detecting charge

Local charge projectors (but cannot separate 
magnetic and electric)

Composition of charges is more complicated! 
(cf. irreps of non-abelian groups)
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Representations of D(G)

Behind the proof is the representation theory of 
the quantum double D(G)

Irreducible representations are in 
correspondence with pairs (π, C)
These representations can have dimension > 1!

⇒ Need “multiplets”  of ribbon operatorsFπC;i,i′ ,j,j′ 

Still have nice (but more complicated) algebraic 
relations
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Positive maps

We can define the following analogue of the 
“charge to infinity” map:

χπC(A) := lim
n→∞

1
dπ |C | ∑

I
∑

K
FπC;IK

n A (FπC;IK
n )*

The limit converges and gives a localised, unital 
positive map



Theorem (Mahdie Hamdan, PN)
The states  are ground states of 
the non-abelian quantum double model. 
These states are factor states, but not pure 
(unless the irreducible representation  is 
one-dimensional).

ω0 ∘ χπC

πC

Work in progress
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Bulk-boundary

In 2D topologically ordered models, excitations 
in the bulk are conjectured to be related to 
gapped boundaries

Kitaev & Kong, Commun. Math. Phys. 313 (2012)

Our analysis of the ground states can be seen as 
an implementation of this idea
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In recent work we give a new axiomatisation for 
topological order (extend the “TQO conditions”)

Satisfied by Kitaev and Levin-Wen models

Can define a “local” boundary algebra

Does not refer to Hamiltonians

Canonical state on bulk and boundary
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corresponding von Neumann algebra is a 
factor of Type  or Type III.II1
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Theorem
For Levin-Wen models, the canonical state 
on the boundary is a KMS-1 state, and the 
corresponding von Neumann algebra is a 
factor of Type  or Type III.II1

C. Jones, PN, D. Penneys & D. Wallick, arXiv:2307.12552

Theorem
The category of “DHR bimodules” of the 
boundary net is the Drinfeld centre , 
where  is the input fusion category for the 
Levin-Wen model.

Z(:)
:



Theorem
Let  be the frustration free ground state of 
the quantum double model for an abelian 
group G. Then for any convex cone , the 
von Neumann algebra  is a 
factor of Type II .

ω

Λ
πω(*(Λ))′ ′ 

∞
Y. Ogata, arXiv:2212.09036
C. Jones, PN, D. Penneys & D. Wallick, arXiv:2307.12552


