Topological phases of matter in an operatoralgebraic approach

Pieter Naaijkens

Cardiff University

Operator Algebras: Subfactors, K-theory, CFT 29 July 2022

Topological phases of matter

$H \ge 0$, $H\Omega = 0$, $\operatorname{spec}(H) \cap (0, \gamma) = \emptyset$

Two states in the same phase if they are connected by a continuous path of gapped Hamiltonians

> What are interesting phases?

> Can we find invariants?

Topological insulators

Altland-Zirnbauer classes: builds on work by **Cartan**

homotopy groups

	d												
Cartan	0	1	2	3	4	5	6	7	8	9	10	11	•••
Complex case:													
А	\mathbb{Z}	0											
AIII	0	\mathbb{Z}											
Real case:													
AI	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	
BDI	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	
D	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	
DIII	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	
AII	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	
CII	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	
С	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	
CI	0	0	0	2ℤ	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	

Kitaev, AIP Conference Proceedings 1134, 2009; Ryu et al, New J. Phys. 12, 2010

Generalisations

> Disorder, interacting fermions

Non-commutative geometry, *K*-theory for operator algebras, index theory

Symmetry Protected Topological (SPT) phases

Classified by group cohomology $H^{\nu+1}(G, \mathbb{T})$ (in dim. $\nu = 1, 2$). Recent rigorous results by Ogata using operator-algebraic techniques.

Topological order

Quantum phase outside of Landau theory

> No good definition known

> ground space degeneracy

> long range entanglement

> anyonic excitations

Wen, Int. J. Mod. Phys. B. 4,1990

Folklore

The anyonic quasi-particle excitations of a topologically ordered state are described by a modular tensor category.

Kitaev, Ann. Physics 321,2006

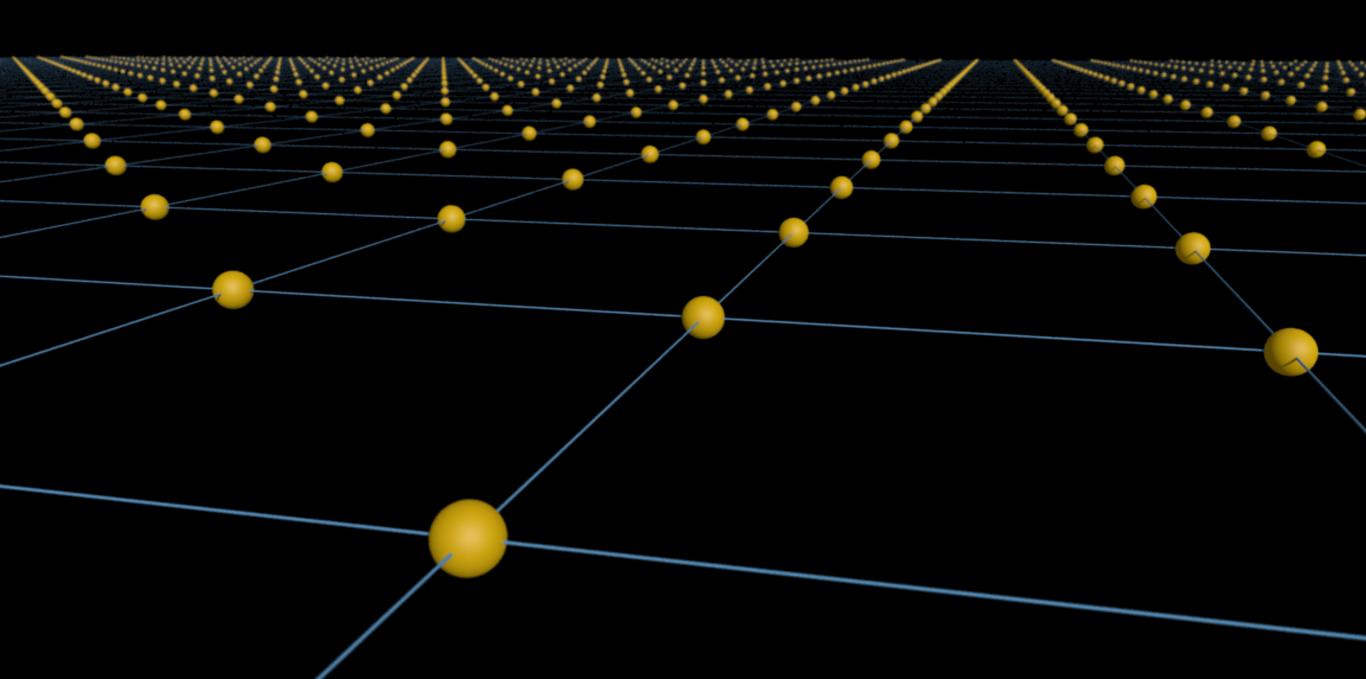
> Kitaev quantum double models, honeycomb

- > Tensor network states (PEPS)
- >Levin-Wen models
- >TQFT approach
- > Category theory approach
- > Entanglement properties

> From first principles / minimal assumptions

- > Result in braided tensor category
- Stable under deformations (i.e., gives rise to proper invariants)
- >Mathematically rigorous
- >Include relevant examples

An operator algebraic approach (Motivated by DHR theory)



Quantum spin systems

Consider 2D quantum spin systems, e.g. on \mathbb{Z}^2 :

local algebras \$\Lambda\$ \mapsto \mathbf{A}\$ (\Lambda\$) \$\approx \mathbf{A}\$ (\mathbf{C}\$)
quasilocal algebra \$\mathbf{A}\$:= \$\overline{\mathbf{U}}\$ (\Lambda\$)

> local Hamiltonians H_Λ describing dynamics

> gives time evolution α_t & ground states

> if ω a ground state, Hamiltonian H_{ω} in GNS repn.

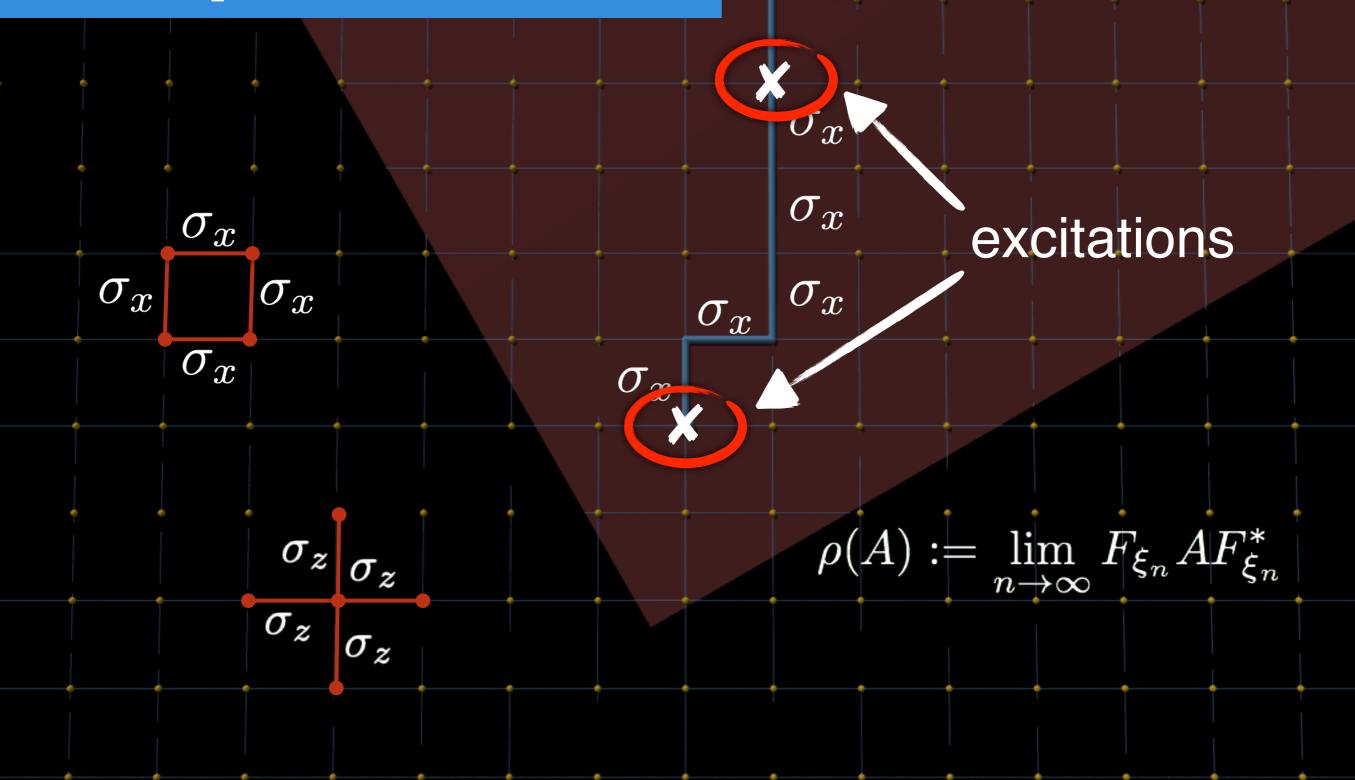
 $> \omega$ is called a gapped GS if H_{ω} is gapped

Definition

A superselection sector is an equivalence class of representations π such that $\pi|_{\mathfrak{A}(\Lambda^c)} \cong \pi_0|_{\mathfrak{A}(\Lambda^c)}$ for all cones Λ .

Image source: http://www.phy.anl.gov/theory/FritzFest/Fritz.html

Example: toric code



Theorem (Fiedler, PN)

Let *G* be a finite abelian group and consider Kitaev's quantum double model. Then the set of superselection sectors can be endowed with the structure of a modular tensor category. This category is equivalent to $\operatorname{Rep} D(G)$.

Rev. Math. Phys. **23** (2011) J. Math. Phys. **54** (2013) Rev. Math. Phys. **27** (2015)

Key step: replace irreps

Use endomorphisms ρ with the following properties:

Solution localised: $\rho(A) = A \quad \forall A \in \mathfrak{A}(\Lambda^c)$

> transportable: for Λ' there exists σ localised and $V\pi_0(\rho(A))V^* = \pi_0(\sigma(A))$

Can study all endomorphisms with these properties

Comparison with CFT

CFT

Local algebras Type III

Haag duality

Reeh-Schlieder property & Möbius covariance

Quantum spin

Local algebras finite dimensional

Approximate Haag duality

Not separating or cyclic for local algebras

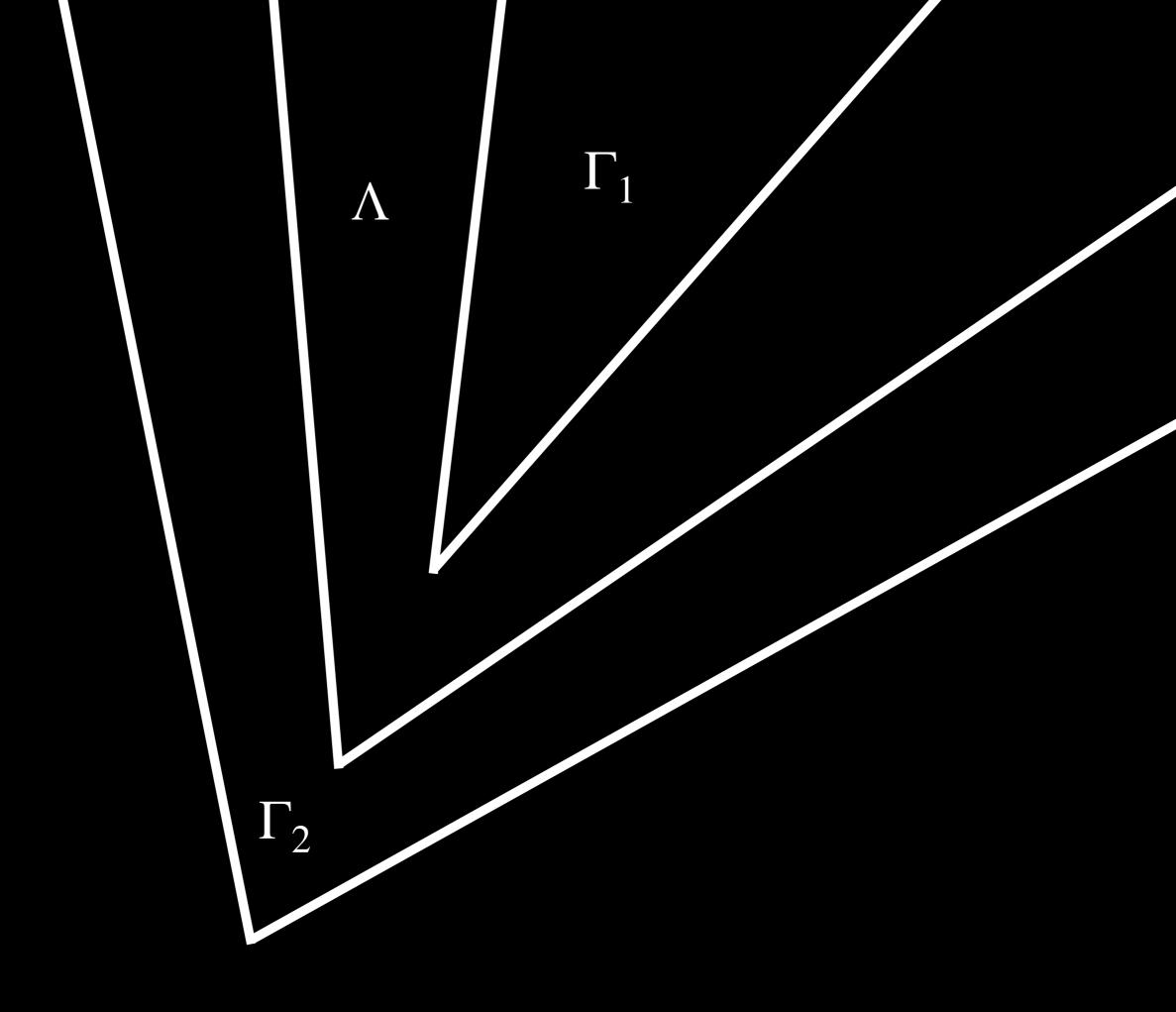
Equivalence of states

Definition

Consider an inclusion $\Gamma_1 \subset \Lambda \subset \Gamma_2$ of cones. Then $\alpha \in \operatorname{Aut}(\mathfrak{A})$ is called *quasifactorisable* if $\alpha = \operatorname{Ad}(u) \circ \Xi \circ (\alpha_\Lambda \otimes \alpha_{\Lambda^c})$ for some unitary $u \in \mathfrak{A}$ and "local"

automorphisms (see picture).

PN & Y. Ogata, Commun. Math. Phys. 392 (2022)



Two states are in the same phase if there is a quasi-factorisable (for any cone) automorphism α such that $\omega_0 = \omega_1 \circ \alpha$. Can be constructed using LR bounds:

$$\|[\alpha(A), B]\| \le \frac{2\|A\| \|B\|}{C_F} \left(e^{C_\Phi} - 1\right) |X| G_F(d(X, Y))$$

Such automorphisms can be obtained naturally from suitable gapped paths of local Hamiltonians!

Approximate Haag duality

Some parts of the sector theory use Haag duality:

 $\pi_0(\mathfrak{A}(\Lambda))'' = \pi_0(\mathfrak{A}(\Lambda^c))'$

Not obvious this holds for $\pi_0 \circ \alpha!$

Better notion: approximate Haag duality:

$$\pi_0(\mathfrak{A}(\Lambda^c))' \subset U_{\Lambda,\epsilon}\pi_0(\mathfrak{A}(\Lambda_\epsilon))U^*_{\Lambda,\epsilon}$$

Ogata, J. Math. Phys. 63 (2022)

Theorem

Let *G* be a finite abelian group and consider the perturbed Kitaev's quantum double model. Then for each *s* in the unit interval, the category $\Delta^{qd}(s)$ category is braided tensor equivalent to $\operatorname{Rep} D(G)$.

Cha, PN, Nachtergaele, *Commun. Math. Phys.* **373** (2020) Ogata, *J. Math. Phys.* **63** (2022)

Cone algebras

Relevant algebras: cone algebras $\pi_0(\mathfrak{A}(\Lambda))''$. These are factors!

> Type I factor: sector theory is trivial (need LRE!)

PN & Ogata, Commun. Math. Phys. 392 (2022)

> Otherwise, Type II_{∞} or Type III

PN, *Lett. Math. Phys.* **101** (2012) Ogata, *J. Math. Phys.* **63** (2022)

But, if $p \in \text{Hom}(\rho, \rho)$ projection, then $p \in \pi_0(\mathfrak{A}(\Lambda))''$ and there is $v \in \pi_0(\mathfrak{A}(\Lambda))''$ with $v^*v = I$, $vv^* = p$.

Comparison with CFT

CFT

Local algebras Type III

Haag duality

Reeh-Schlieder property & Möbius covariance

Quantum spin

Local algebras finite dimensional

Approximate Haag duality

Not separating or cyclic for local algebras

Conclusions

The AQFT / local conformal net-inspired approach to superselection sectors in topologically ordered phases provides an elegant framework to study phases, based on first principles and a microscopic description of the system.

Questions: 2 log co F(So,Si)

 $F(P_{o}, S_{i})) \leq$

1 50,000

A(2) - X(2)

∇ When is it modular? $\nabla = \int -\pi$

Gitter.

AB = L-- F

(2,3):= arcos, F(2

->B(31,31)= -)k(1- F(3,7

D(2.3):= 11- 72

loc 2 Interesting models?

Various constructions I = log(2) ; F(Coor, R(G)) + ; F