Anyons and long-range entanglement

Pieter Naaijkens

Cardiff University

Based on joint work with Cha, Fiedler, Nachtergaele & Ogata

SCGP Workshop C*-algebras, K-theories and Noncommutative Geometries of Correlated Condensed Matter Systems 17 May 2021

Gapped quantum phases

$H \ge 0$, $H\Omega = 0$, $\operatorname{spec}(H) \cap (0, \gamma) = \emptyset$

Two states in the same phase if they are connected by a continuous path of gapped Hamiltonians

> What are interesting phases?

> Can we find invariants?

Topological order

short-range entangled

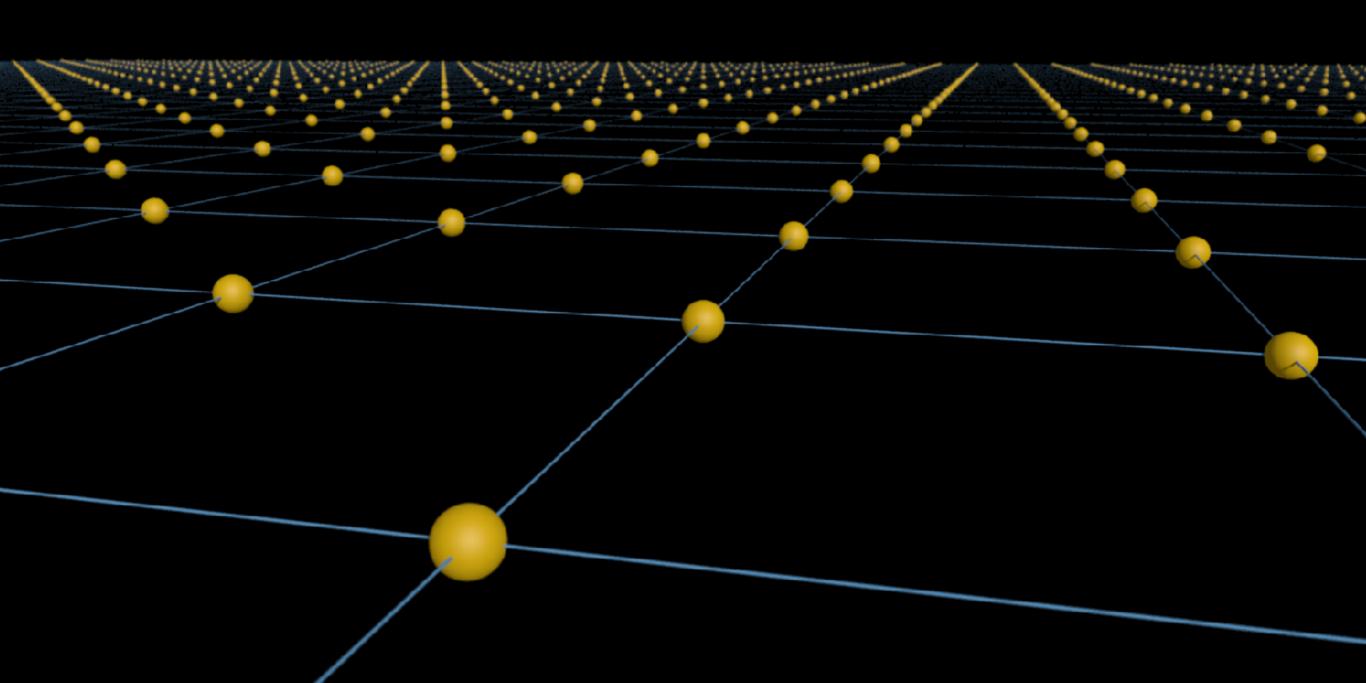
Example: 1D gapped phases

Topological features from protected symmetries

long-range entangled

"intrinsic topological order"
Example: toric code
Ground space degeneracy
Anyonic quasiparticles
Modular tensor category

Quantum phases in an operator algebraic framework



Quantum spin systems

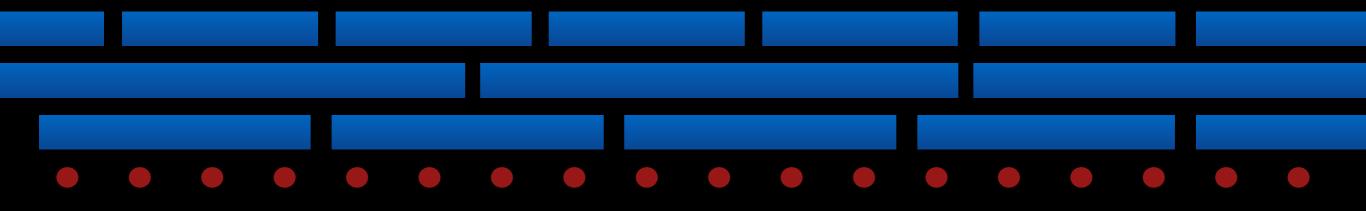
- Consider 2D quantum spin systems, e.g. on \mathbb{Z}^2 :
- > local algebras $\Lambda \mapsto \mathfrak{A}(\Lambda) \cong \bigotimes_{x \in \Lambda} M_d(\mathbb{C})$

> quasilocal algebra
$$\mathfrak{A} := \bigcup \mathfrak{A}(\Lambda)^{\|\cdot\|}$$

- > local Hamiltonians H_{Λ} describing dynamics
-) gives time evolution $\alpha_t \in Aut(\mathfrak{A})$ & ground states

) if ω a ground state, Hamiltonian H_{ω} in GNS repn.

Finite depth quantum circuit



Theorem (Bachmann, Michalakis, Nachtergaele, Sims) Let $s \mapsto H_{\Lambda} + \Phi(s)$ be a family of gapped Hamiltonians. Then there is a family $s \mapsto \alpha_s$ of automorphisms such that the weak-* limits of ground states (with open boundary conditions) are related via

 $\mathcal{S}(s) = \mathcal{S}(0) \circ \alpha_s$

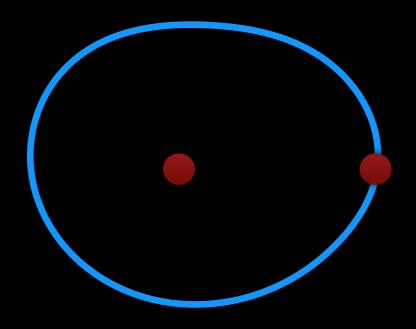
Commun. Math. Phys. **309** (2012)

The main feature about the family of automorphisms α_s is that they are **quasi-local**, i.e. satisfy a **Lieb-Robinson** type of bound:

$$\|[\alpha(A), B]\| \leq \frac{2\|A\| \|B\|}{C_F} \left(e^{C_\Phi} - 1 \right) |X| G_F(d(X, Y))$$

This implies good localisation properties for α !

Anyons



not contractible!

In quantum mechanics (abelian case): $\psi \rightarrow e^{i\theta} \psi$

Leinaas & Myrheim (1977), Wilczek (1982)

Anyons and modular tensor categories

anyon types ⇔ irreducible objects

fusion of charges
$$\Leftrightarrow \rho_i \otimes \rho_j = \sum_k N_{ij}^k \rho_k$$

conjugate charge ⇔ duals/conjugates

exchanging anyons \Leftrightarrow braiding

detect anyons through braiding ⇔ modularity

Problems: -zlogco F(50,5,)

(Caston 1 ist

X(2) - X(2)

(3) How to get the MTC? = $(A|B) \in \mathbb{P}(A|B) \in \mathbb{P}$

F

(2,3):= arccos

->B(31,31)= 2)R(1- F(3,7

- (1- +2

R (s.)

Is this an invariant?

MOV M

ERE and trivial phases

Doplicher-Haag-Roberts sector theory

Definition

A superselection sector is an equivalence class of representations π such that $\pi|_{\mathfrak{A}(\Lambda^c)} \cong \pi_0|_{\mathfrak{A}(\Lambda^c)}$ for all cones Λ .

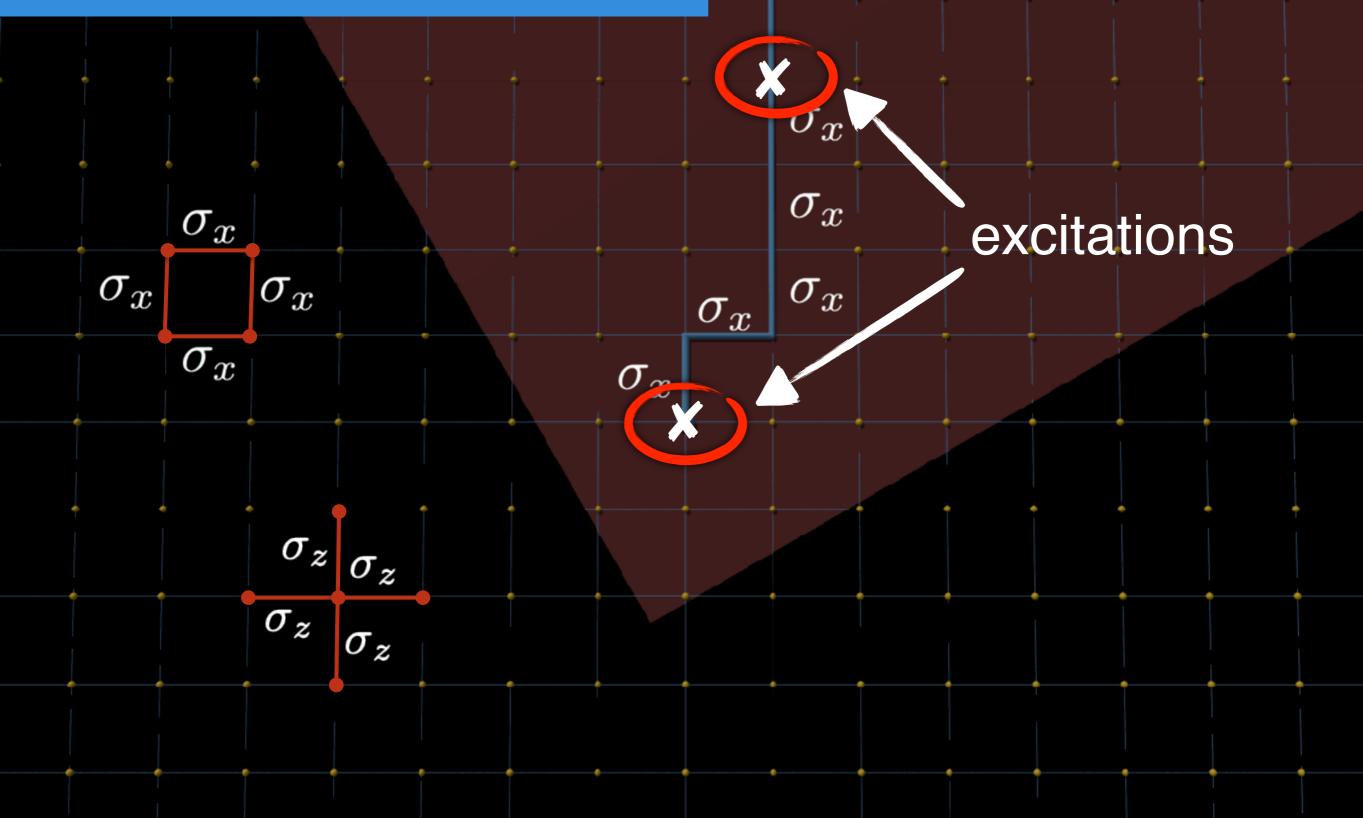
Image source: http://www.phy.anl.gov/theory/FritzFest/Fritz.html

Physical interpretation

This definition encodes the following properties:

- 1. Charge conservation: local operators cannot change the total charge
- 2. Localisation of the charge in cones
- 3. Transportability of the charges

Example: toric code



Example: toric code

$\omega_0 \circ \rho$ is a single excitation state

 $\rho(A) := \lim_{n \to \infty} F_{\xi_n} A F_{\xi_n}^*$

π₀ ο ρ describes
 observables in
 presence of
 background charge

Localised and transportable morphisms

The endomorphism ρ has the following properties:

) localised: $\rho(A) = A \quad \forall A \in \mathfrak{A}(\Lambda^c)$

> transportable: for Λ' there exists σ localised and $V\pi_0(\rho(A))V^* = \pi_0(\sigma(A))$

Can study all endomorphisms with these properties to find braiding, fusion, etc.

Theorem (Fiedler, PN)

Let *G* be a finite abelian group and consider Kitaev's quantum double model. Then the set of superselection sectors can be endowed with the structure of a modular tensor category. This category is equivalent to $\operatorname{Rep} D(G)$.

Rev. Math. Phys. **23** (2011) J. Math. Phys. **54** (2013) Rev. Math. Phys. **27** (2015)

Stability

Classification of phases

> Does the gap stay open under small perturbations?

Bravyi & Hastings, *J. Math. Phys.* **51** (2010) Michalakis & Zwolak, *Commun. Math. Phys.* **322** (2013) Nachtergaele, Sims & Young, arXiv:2102.07209 *and many others...*

> How are the states related?

Hastings, *Phys. Rev. B* 69 (2004)
Hastings & Wen, *Phys. Rev. B* 72 (2005)
Bachmann, Michalakis, Nachtergaele & Sims, *Commun. Math. Phys.* 309 (2012)
Nachtergaele, Sims & Young, *J. Math. Phys.* 60 (2019)
Moon & Ogata, *J. Funct. Anal.* 278 (2020)

Does this apply to the sector theory?

Theorem (Cha, PN, Nachtergaele)

Let *G* be a finite abelian group and consider the perturbed Kitaev's quantum double model. Then for each *s* in the unit interval, the category $\Delta^{qd}(s)$ category is braided tensor equivalent to $\operatorname{Rep} D(G)$.

Commun. Math. Phys. 373 (2020)

Long-range entanglement

Folklore

Topological order (and in particular anyonic excitations) are due to long-range entanglement

Long range entanglement

- > Bipartite system $\mathfrak{A}_{\Lambda} \otimes \mathfrak{A}_{\Lambda^c}$
- > Product states $\omega = \omega_{\Lambda} \otimes \omega_{\Lambda^c}$ have only

classical correlations

>LRE: $\omega \circ \alpha$ is not quasi-equivalent to a

product state for any quasi-local automorphism

> In 1D, gapped ground states are not LRE, in 2D this can be different!

A new superselection criterion

We can relax the superselection criterion:

$$\pi \,|\, \mathfrak{A}_{\Lambda^c} \sim_{qe} \pi_{\omega} \,|\, \mathfrak{A}_{\Lambda^c}$$

That is, quasi instead of unitary equivalence

Remark: can be constructed naturally in non-abelian theories!

Szlachányi & Vecsernyés, CMP 156, 1993

Theorem

Let ω be a pure state such that its GNS representation is quasi-equivalent to $\pi_{\Lambda} \otimes \pi_{\Lambda^c}$ for some cone Λ . Then the corresponding superselection structure is trivial.

PN & Y. Ogata, arXiv:2102.07707

The trivial phase

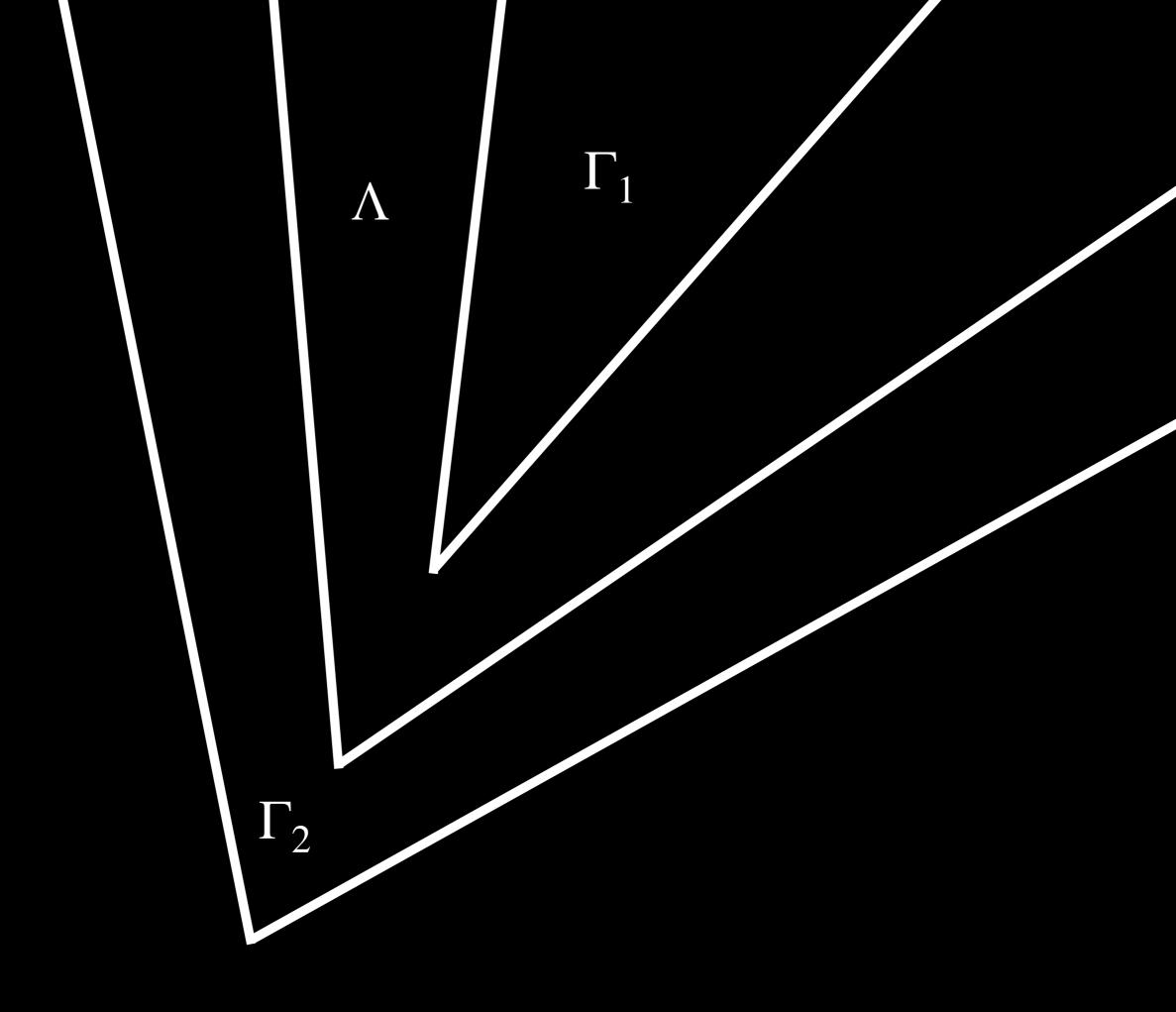
This shows that Kitaev's toric code cannot satisfy the split property

Can it still be in the same phase?

Definition

Consider an inclusion $\Gamma_1 \subset \Lambda \subset \Gamma_2$ of cones. Then $\alpha \in Aut(\mathfrak{A})$ is called *quasifactorisable* if: $\alpha = Ad(u) \circ \Xi \circ (\alpha_\Lambda \otimes \alpha_{\Lambda^c})$ for some unitary *u* and "local" automorphisms (see picture).

PN & Y. Ogata, arXiv:2102.07707



Theorem

Let π_0 be a representation and α quasifactorisable for every cone. Then if π satisfies the selection criterion for π_0 , then so does $\pi \circ \alpha$ for $\pi_0 \circ \alpha$.

Corollary

States in the trivial phase have trivial superselection structure.

PN & Y. Ogata, arXiv:2102.07707

Split property

Split property

The rigorous definition of many SPT invariants (in ID) depends on the split property:

$$\pi_{\omega}(\mathfrak{A}_{L})'' \subset \mathcal{N} \subset \pi_{\omega}(\mathfrak{A}_{R})'$$

Equivalently, for ω pure:

$$\omega \sim_{qe} \omega_L \otimes \omega_R$$

Since
$$\mathscr{N}$$
 is a Type I factor: $\mathscr{H}_{\omega} \simeq \mathscr{H}_{\omega_L} \otimes \mathscr{H}_{\omega_R}$

Split property implies triviality of sector theory!

Split property

Theorem (Matsui, JMP 51, 2010)

A pure gapped ground state of a 1D spin chain satisfies the split property.

This is no longer true in 2D!

Theorem (PN, Lett. Math. Phys. 101, 2012)

The translational invariant ground state of the toric code satisfies the *approximate* split property, but not the split property.

The approximate split property

Approximate split property

Kitaev's abelian quantum double models satisfy a weaker form of the split property:

$$\pi(\mathfrak{A}_{\Lambda_1})'' \subset \mathcal{N} \subset \pi(\mathfrak{A}_{\Lambda_2})''$$

for suitable inclusions of cones $\Lambda_1 \subset \Lambda_2$

Interpretation: "entanglement is concentrated near the boundary of the cone"

Approximate split property is useful in stability analysis!

Theorem

The approximate split property is stable under quasi-local automorphisms.

PN & Y. Ogata, arXiv:2102.07707

Open problems of F(So,S,)

X(2) - X(2)

) = log 2

em

201 - 2 S(P.)

F(Po,R)

 $F(P_{a}, S_{i})$

[[50,00]

When do we have sectors?

NK

2, 2,):= arccos

 $\chi = \frac{1}{2} \left(\frac{1}{2} \frac{1}{2} + \frac{1}{2} \frac{1$

->B(31,31)= -)b(1- F(3,7

Split property and TEE X(Sooz, R(S.))

(AID - H(AB