Stability of anyonic superselection sectors

arXiv:1804.03203

Matthew Cha, <u>Pieter Naaijkens</u>, Bruno Nachtergaele Universidad Complutense de Madrid

15 August 2019

This work was funded by the ERC (grant agreement No 648913)

Quantum phases

Quantum spin systems

- Consider 2D quantum spin systems, e.g. on \mathbb{Z}^2 :
- > local algebras $\Lambda \mapsto \mathfrak{A}(\Lambda) \cong \bigotimes_{x \in \Lambda} M_d(\mathbb{C})$

> quasilocal algebra
$$\mathfrak{A} := \bigcup \mathfrak{A}(\Lambda)^{\|\cdot\|}$$

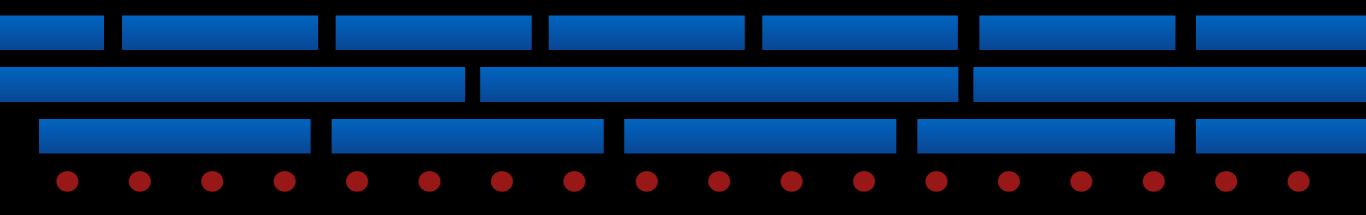
- > local Hamiltonians H_{Λ} describing dynamics
-) gives time evolution α_t & ground states
-) if ω a ground state, Hamiltonian H_{ω} in GNS repn.

Quantum phases of ground states

Two ground states ω_0 and ω_1 are said to be *in the* same phase if there is a continuous path $s \mapsto H(s)$ of gapped local Hamiltonians, such that ω_s is a ground state of H(s).

(Chen, Gu, Wen, Phys. Rev. B 82, 2010)

Alternative definition: ω_0 can be transformed into ω_1 with a *finite depth local quantum circuit*.



Theorem (Bachmann, Michalakis, Nachtergaele, Sims)

Let $s \mapsto H_{\Lambda} + \Phi_{\Lambda}(s)$ be a family of gapped Hamiltonians. Then there is a family $s \mapsto \alpha_s$ of automorphisms such that the weak-* limits of ground states (with open boundary conditions) are related via

 $\mathcal{S}(s) = \mathcal{S}(0) \circ \alpha_s$

Commun. Math. Phys. **309** (2012) Moon & Ogata, arXiv:1906:05479 (2019)

Topological phases

Quantum phase outside of Landau theory

> ground space degeneracy

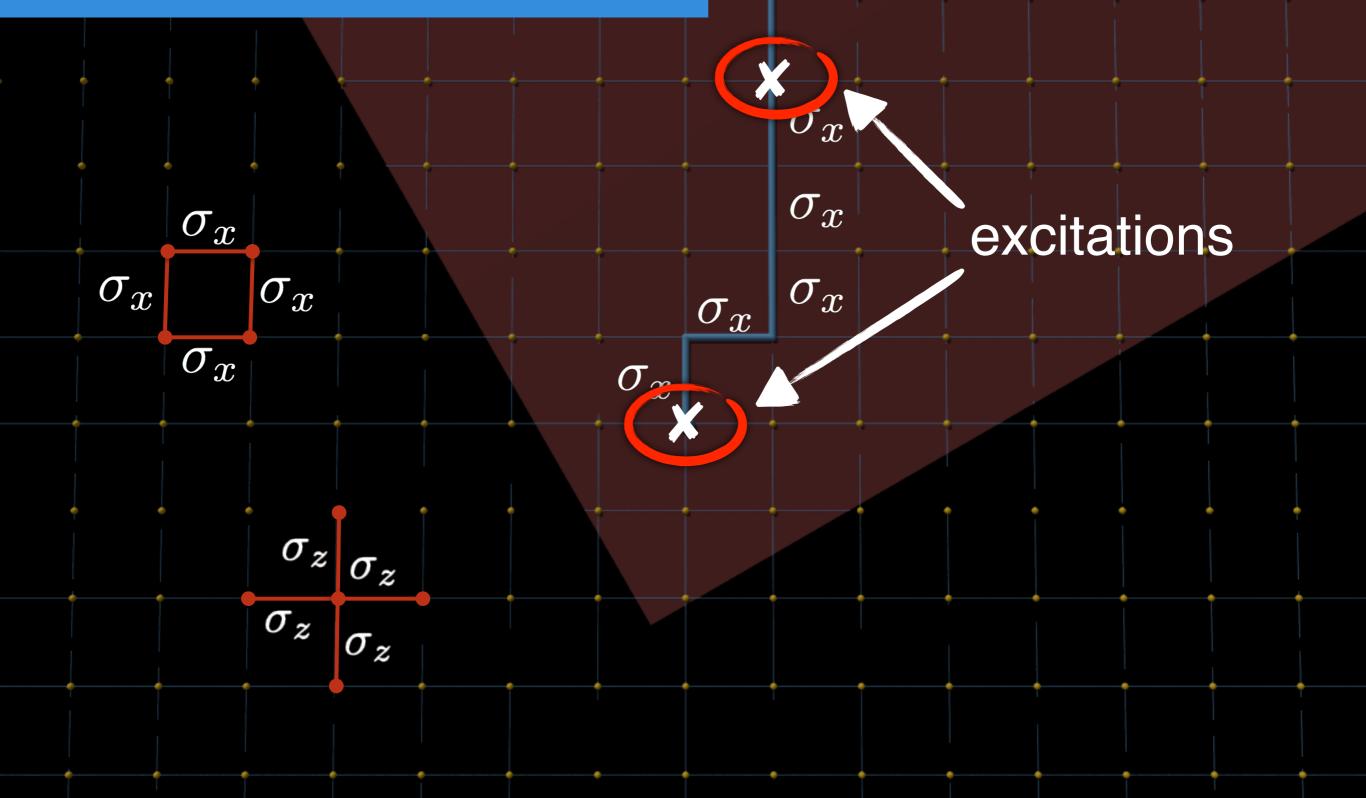
> long range entanglement

> gapped

> anyonic excitations

modular tensor category / TQFT

Example: toric code



Example: toric code

$\omega_0 \circ \rho$ is a single excitation state

 $\rho(A) := \lim_{n \to \infty} F_{\xi_n} A F_{\xi_n}^*$

π₀ ο ρ describes
observables in
presence of
background charge

Superselection sectors

Localised and transportable morphisms

The endomorphism ρ has the following properties:

Solution localised: $\rho(A) = A \quad \forall A \in \mathfrak{A}(\Lambda^c)$

> transportable: for Λ' there exists σ localised and $V\pi_0(\rho(A))V^* = \pi_0(\sigma(A))$

Can study all endomorphisms with these properties (à la Doplicher-Haag-Roberts)

Doplicher, Haag, Roberts, Fredenhagen, Rehren, Schroer, Fröhlich, Gabbiani, ...

Theorem (Fiedler, PN)

Let *G* be a finite abelian group and consider Kitaev's quantum double model. Then the set of superselection sectors can be endowed with the structure of a modular tensor category. This category is equivalent to $\operatorname{Rep} D(G)$.

Rev. Math. Phys. **23** (2011) J. Math. Phys. **54** (2013) Rev. Math. Phys. **27** (2015)

How much of the structure is invariant?

> Does the gap stay open under small perturbations?

> Is the superselection structure preserved?

Bravyi, Hastings, Michalakis, J. Math. Phys. 51 (2010) Haah, Commun. Main. Phys. 342 (2016)

Almost localised endomorphisms

No strict localisation

Technical reason

The superselection criterion is defined on the C*algebraic level...

... but full analysis requires von Neumann algebras (also, split property, Haag duality for π_0)

For example, intertwiners $V \in \pi_0(\mathfrak{A}(\Lambda))''$

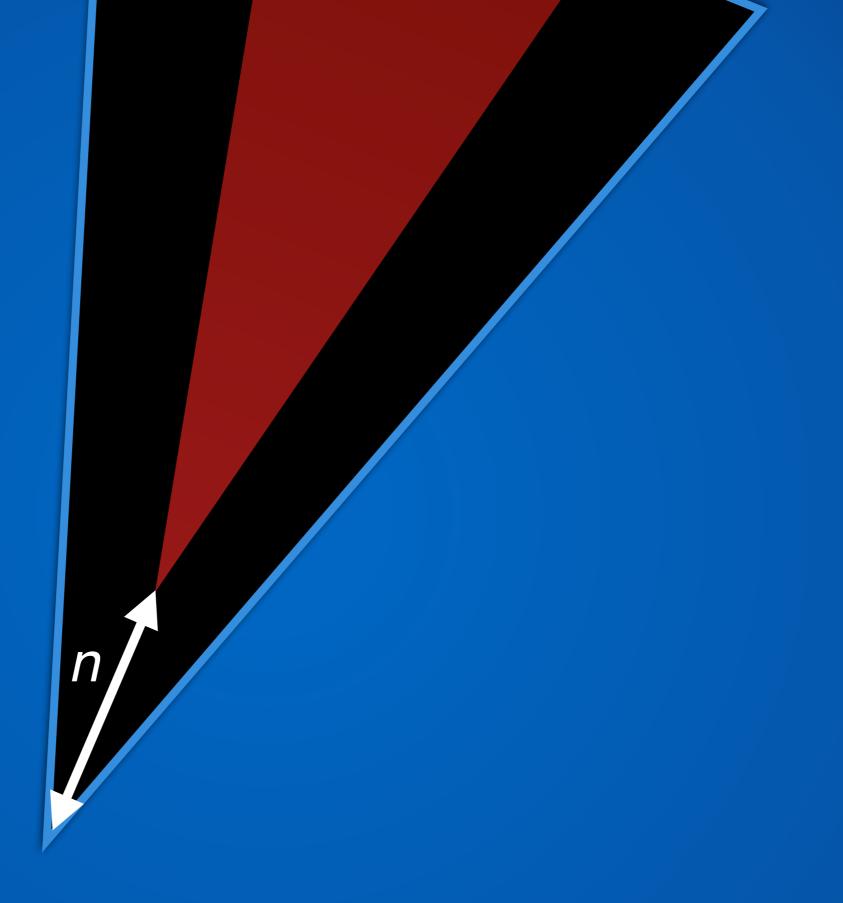
Not clear if/how α_s extends

Almost localised endomorphisms

An endomorphism ρ of \mathcal{A} is called *almost localised* in a cone Λ_{α} if

$$\sup_{A \in \mathcal{A}(\Lambda_{\alpha+\epsilon}^c+n)} \frac{\|\rho(A) - A\|}{\|A\|} \le f_{\epsilon}(n)$$

where $f_{\epsilon}(n)$ is a non-increasing family of absolutely continuous functions which decay faster than any polynomial in *n*.



The semigroup Δ

Define a semigroup Δ of endomorphisms that are

- > almost localised in cones
- > transportable: for Λ' there exists σ almost localised and $V\pi_0(\rho(A))V^* = \pi_0(\sigma(A))$
- > intertwiners $(\rho, \sigma)_{\pi_0}$

Can we do sector analysis again?

Stability of Kitaev's quantum double

Asymptotically inner

For general endomorphisms, there are $\{U_n\} \subset \mathfrak{B}(\mathcal{H})$

$$\pi_0(\rho(A)) = \lim_{n \to \infty} U_n \pi_0(A) U_n^*$$

Sequences are not unique, look at such collections:

$$\rho(A) = \lim_{n} U_n A U_n^*, \ \rho'(A) = \lim_{n} V_n A V_n^*$$

and $R \in (\rho, \rho')_{\pi_0}, \quad R' \in (\sigma, \sigma')_{\pi_0}$ asymptopia

$$\lim_{m,n\to\infty} \| [V_n R U_m^*, R'] \| = 0$$

Buchholz, Doplicher, Morchio, Roberts & Strocchi. In: Rigorous quantum field theory (2007)

Follow strategy of Buchholz et al.: (bi-)asymptopia

Using approximate localisation we can get control over the support of $\{U_n\}$

Use this to construct bi-asymptopia and obtain braided tensor category

Buchholz, Doplicher, Morchio, Roberts & Strocchi. In: Rigorous quantum field theory (2007)

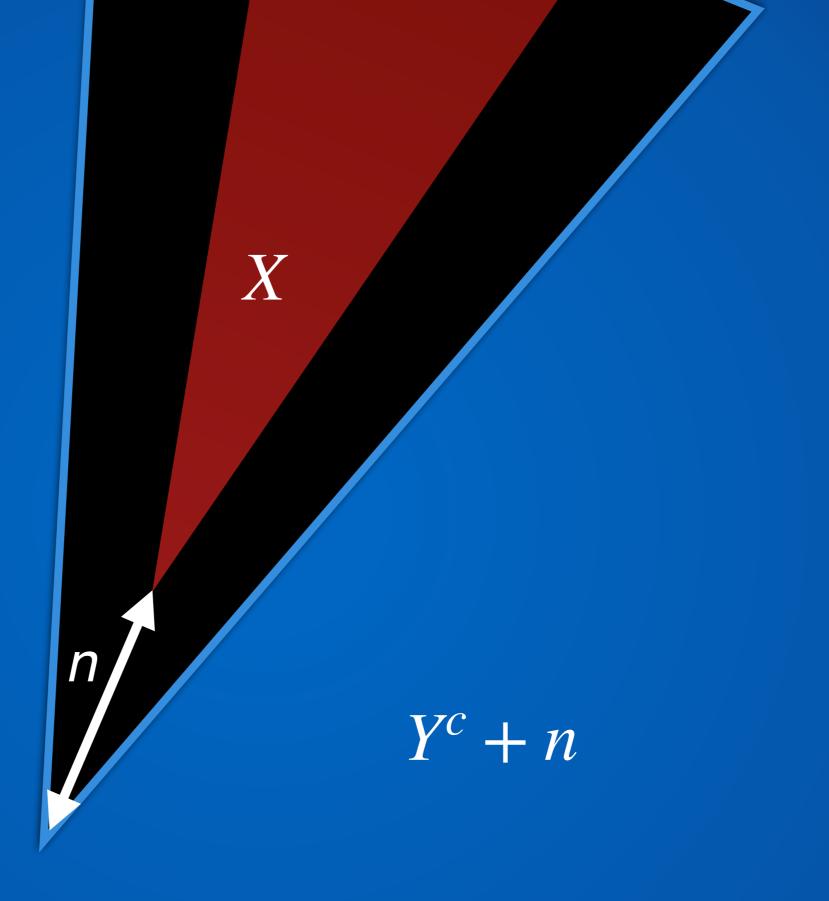
Lieb-Robinson for cones

Quasi-local evolution send observables localised in cones to almost localised observables:

Let *X* be a cone and *Y* a cone with a slightly larger opening angle. Then with $A \in \mathfrak{A}(X), B \in \mathfrak{A}(Y^c + n)$

 $\|[\tau_t(A), B]\| \propto \|A\| \|B\| \|p(d(X, Y+n))e^{-vt - d(X, Y+n)}$

Schmitz, Diplomarbeit Albert-Ludwigs-Universität Freiburg (1983)



Putting it all together

- > (bi-)asymptopia give braided tensor category Δ^{qd}
- > LR bounds give localisation in cones
- > can use this to prove $\Delta^{qd} \cong \alpha_s^{-1} \circ \Delta^{qd} \circ \alpha_s$
- > unperturbed model is well understood
- > need energy criterion

Theorem

Let *G* be a finite abelian group and consider the perturbed Kitaev's quantum double model. Then for each *s* in the unit interval, the category $\Delta^{qd}(s)$ category is braided tensor equivalent to $\operatorname{Rep} D(G)$.

Cha, PN, Nachtergaele, arXiv:1804.03203