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Quantum phases of a chain of strongly interacting anyons

Peter E. Finch, Holger Frahm, Marius Lewerenz, Ashley Milsted, and Tobias J. Osborne
Institut fir Theoretische Physik, Leibniz Universitdit Hannover, Appelstrafle 2, 30167 Hannover, Germany

Quantum gates for the manipulation of topological qubits rely on interactions between non-

Abelian anyonic quasiparticles. We study the collective behaviour of systems of anyons arising from
such interactions. In particular, we study the effect of favouring different fusion channels of the

screened Majorana spins appearing in the recently proposed topological Kondo effect. Based on the
numerical solution of a chain of SO(5)2 anyons we identify two critical phases whose low-energy
behaviour is characterised by conformal field theories with central charges ¢ = 1 and ¢ = 8/7,

respectively.

Our results are complemented by exact results for special values of the coupling

constants which provide additional information about the corresponding phase transitions.

PACS numbers: 05.30.Pr, 05.70.Jk, 03.65.Vf

Low-dimensional quantum systems hold an irresistible
and enduring fascination because they can support
topological states of matter with exotic quasiparticles,
anyons, exhibiting unusual braiding statistics [1]. While
initially a curiosity, anyons generated considerable excite-
ment when it was realized that the fractional quantum
Hall effect [2] — and later nanowires [3, 4] and the p,+ip,
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time history in order to discuss their dynamics. While
the non-interacting case is now becoming well understood
(see, e.g., [10]) the classification of phases for systems of
interacting anyons has progressed much slower. An addi-
tional complication is that the description of the dynam-
ics of a highly entangled SO(M) Majorana spin in the
topological Kondo model, and the collective behaviour







CFT Dream:
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Conformal group:
conf(RV1) =
diff.(S1) x diff (S1)
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MAIN TASK:
find TNS subspaces for
low energy & large scale
excitations which admit
“conformal group action”



Kadanoff bock spin
renormalisation
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This is important!
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Intermediate
lattice systems are
coarser partitions

of circle



No rescaling is
applied!
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(Semi)continuous limit
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Standard dyadic interval:

interval of form [2‘,‘1, ‘;;1]

N N

[0,4] [52] |53l [ 1]
/NN NN




Standard dyadic partitions:

partitions [0,1] into std. dyadic
intervals

D =< .. —H+— —++,. ;




It P,Q € D say
"P < Q" to mean partition
Q is a refinement of P

(Q has more cells)



Standard dyadic partition:
directed set D




Standard dyadic partitions:
representation via trees

[0,1]

/N

[0,3] [z 1]




Standard dyadic partitions:
representation via trees

NN
NN




Hilbert space structure




it P < Qidentity Hp C Hp
via Isometry:

TCI;:’HP%IHQ




How to build isometries?
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Demand WLOG







Equivalence: [p)p ~ |Y),
if IR

TE|p)p = Ty [¥)o




Semicontinuous limit: Extrapolate!
T, embeds into arbitrarily

fine (std. dyadic) lattices
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Definition: let (D, <) be a directed set. Let a
hilbert space Hp be given foreachP € D
Forall P<Q let T : Hp — Ho be an
isometry such that:

(1) T% isthe identity
(2) TRTS =T, VP<Q<R

hen (#p,Ty) is a directed system.



Semicontinuous limit:

H

-

lim
im #Hp
PcP

( the disjoint union of Hp overall P € P
modulo the equivalence relation [¢)p ~ |Yh)g
if thereis R = P and R = Q such that

TE|p)p = Ty lh)g

\

V. F. R. Jones, arXiv:1412.7740 (2014)
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Residents of 7 :

[1P)p] = {ld)g = Tg 1¥)p}



Each hilbert space Hp is a natural
subspace of H:

Hp & H
VIa

[Y)p — [|Y)p]



Dynamics



Thompson’s group 7: generated by A(x), B(x),

and C(x) under composition

A(x) B (x) C(x)

J. W. Cannon, W. J. Floyd, and W. R. Parry, Enseign. Math., vol. 42, no. 3—4, pp. 215 — 256, 1996



Proposition (“well known”): let f € diff, (S1). Then
3 sequence A, (x) €T st [|4, — flleo = O.

f(x) A1 (x)

see e.g., D. Stiegemann , arXiv:1810.11041
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Elements of Fand T



Pairs of std. dyadic partitions/trees

S
N

J. W. Cannon, W. J. Floyd, and W. R. Parry, Enseign. Math., vol. 42, no. 3—4, pp. 215 — 256, 1996

B(x)



Pairs of std. dyadic partitions/trees

OO
D
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Representing Fand 7 on H
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V. Jones (2014)
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Observables:
“Thompson field

theory”



Definition: an ascending operator

Uy € B(H) is an eigenvector of the
ascending channel:

Vip* @ DV = A u”




Definition: the discretised field operator of

type a at z € S* with respect to a partition
P=(41,..,1,)is

¢p(Z) — EIEPI[Z e ] (/16()101‘%2(|1|)‘u;Z

TJO and D. Stiegemann, arXiv:1903.00318
See also A. Brothier and A. Stottmeister, arXiv:1901.0490



Definition (product of field operators): let
(x4, X5, ..., X ) be a tuple of positions and a =
(aq, ay, ..., ay) a tuple of types, and P a
partition.

Mg(lexZJ ...,Xn) = gb[c)xl (x1)¢g2 (XZ) ngn(xn)

TJO and D. Stiegemann, arXiv:1903.00318
See also A. Brothier and A. Stottmeister, arXiv:1901.0490



Theorem: the limit
CH(xq, X9, en, Xp) = li}r)n(QPr\Mﬁ‘(x) |Qpr)

exists and may be calculated using O (log(n))
operations.

TJO and D. Stiegemann, arXiv:1903.00318



Conjecture (reconstruction):

Ca(xlixZJ an) = (Q‘$a1 (xl) $“n(xn)|ﬂ>

TJO and D. Stiegemann, arXiv:1903.00318



C(3x) = lim(p* (2)pp* ()
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Lemma: let x and y be two dyadic fractions
ch,B (X, }7) — C((X, ,8, )/) D (X, y)log Aq+log Ap—log 4,

where D (x, y) is the coarse graining distance.

TJO and D. Stiegemann, arXiv:1903.00318



Short distance expansion:

B*()PF () ~ £F D (x, y)rhahs Y (y)

“OPE” coefficients

TJO and D. Stiegemann, arXiv:1903.00318



Thompson field
theory




